Helen Helsinki

To support Helsinki's 2030 carbon neutrality target, energy provider Helen Oy is building one of the world's largest airto-water heat pumps for district heating. The new system, developed in collaboration with Everllence, will deliver up to 200 GWh of clean heat annually to around 30,000 households – directly replacing fossil-based production and cutting CO₂ emissions by up to 26,000 tons per year.

Everllence

Key facts

- End customer: Helen (Finland)
- Application: District heating for approx. 30,000 households
- Scope of delivery:
 One large-scale air-to-water heat pump
- Refrigerant: CO₂ (R744)
- Heat source: Ambient air
- Heat sink: Water up to 90 °C
- Heat output: 20–33 MW (temperature-dependent)
- · Annual heat output: Approx. 200 GWh
- COP: ~3.0-3.5 (estimated)
- CO₂ savings: Up to 26,000 tons p.a.

Explore our landingpage

Helen Helsinki

Heat pump reference case

Project background

As part of Helsinki's goal to reach carbon neutrality by 2030, local utility Helen Oy is expanding its district heating capacity with a groundbreaking air-to-water heat pump installation. Developed in partnership with Everllence, the project replaces fossil-fueled heat production with a future-ready, zero-emission alternative. The new Patola plant will feature the world's largest air-to-water heat pump ever installed for district heating – a flagship installation within Finland's transition toward clean thermal energy.

System integration & application

The system captures thermal energy from the ambient air – even at outdoor temperatures as low as −20 °C – and uses CO₂ as a refrigerant to raise the water temperature to up to 90 °C. Operated with electricity from renewable sources, the heat pump feeds directly into Helsinki's district heating network. Together with two 50 MW electric boilers, the unit forms a hybrid solution capable of delivering flexible base and peak load capacity, while helping balance Finland's power grid and reducing reliance on imported fuels.

Operational impact & scalability

Once operational, the system will supply approximately 200 GWh of renewable heat annually to around 30,000 households. Replacing fossilbased heat generation, the plant will cut CO₂ emissions by up to 26,000 tons per year. At the heart of the system lies Everllence's HOFIM® compressor technology – oil-free with magnetic bearings and designed for optimal efficiency and durability in large-scale thermal infrastructure. This installation sets a new benchmark for air-based heat pump applications and underlines the potential of electrified heating in coldclimate cities.

 ${\bf Oil-free\ HOFIM}^{\circ}\ compressor\ skid\ by\ Everllence\ for\ high-temperature\ heat\ pump\ applications.$

Technical highlights

Heat source	Ambient air (operational down to –20 °C)
Heat sink temperature	Up to 90 °C
Total heating capacity	20-33 MW (air temperature-dependent)
Annual heat output	Approx. 200 GWh
Refrigerant	CO₂ (R744), a natural and non-toxic refrigerant
Technology	Oil-free HOFIM® compressor with high-speed motor and magnetic bearings
Electrical input	Renewable electricity
COP	~3.0-3.5 (estimated)
Annual CO₂ savings	Up to 26,000 tons

Everllence

86224 Augsburg, Germany P+ 49 821 322-0 info@everllence.com www.everllence.com