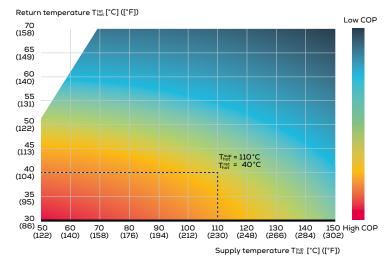
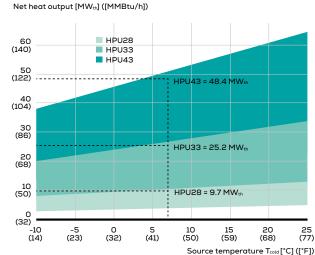

TCC Heat pump

This high temperature, emission-free Everllence heat pump solution makes efficient use of the special properties that CO₂ offers as working fluid.

Benefits at a glance

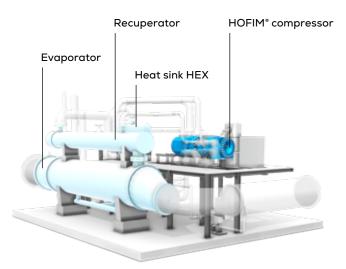

- Low maintenance and remote operation
- Natural refrigerant
- Up to 50 MW heat and 30 MW cooling per unit
- Temperatures up to 150 °C (302 °F)
- Fast start-up, shut down and load change
- Participation in the primary and secondary balancing market (FCR, aFRR)
- Flexible adaptation under operation
- High power density

Everllence


Nominal Conditions

	Unit	Everllence HPU28	Everllence HPU33	Everllence HPU43
No. compressors	Pcs.	1	1	1
Variable speed drive (VSD)	-	Yes	Yes	Yes
Max. thermal turndown	%	50	50	50
Refrigerant charge (CO₂)	kg (lbs)	9,000 (19,841)	13,750 (30'313)	20,000 (44'092)
Electrical supply voltage	kV	min. 4.16	min. 6	Min. 6
Heating capacity	kW _{th} (MMBtu / h)	9,670 (33)	25,230 (86)	48,400 (165)
Cooling capacity	kW _{th} (tons)	6,270 (1783)	16,730 (4757)	32,500 (9241)
Motor input power	kW _{el}	3,400	8,500	15,900
COP (Hot)	-	2.84	2.97	3.04
COP (Cold)	-	1.84	1.97	2.04
COP (total excl. pumps)	-	4.68	4.94	5.08
Dimensions (L/W/H)	m (ft)	12/8/8 (40/26/26)	16/8/8 (52/26/26)	19/10/8 (62/33/26)
Floor load	kN / m² (psf)	10 (209)		
Connections at heat sink	-	DN200 (4")	DN300 (12")	DN400 (16")
Connections at heat source	-	DN500 (20")	DN900 (36")	DN1400 (56")
Design pressure	Barg (psig)			180 (2610)
Design temperature	°C (°F)	200 (392)		
Controller type	-	Programmable logic controller (PLC)		
Communication protocol	_	MODBUS / PROFINET / Ethernet		

Nominal reference conditions: Heat sink supply / return temp.: 110 °C / 40 °C (230 °F / 104°F); Heat source temp.: 10 °C (50 °F)


COP operating range as function of heat sink supply and return temperature for a constant source temperature

Net heat output as function of the source temperature (Heat sink temp. $110^{\circ}C/40^{\circ}C$ ($230^{\circ}F/104^{\circ}F$))

Advantages of using CO² as a natural refrigerant

- Carbon dioxide is a naturally available gas which is available in large quantities and inexpensive compared to synthetic refrigerants
- Carbon dioxide is an environmentally friendly, low GWP, non-toxic and non-explosive medium
- Carbon dioxide is a very dense refrigerant with a high volumetric heating capacity; this allows the piping sizes and equipment volume to be much smaller than an equivalent HFC system
- Transcritical CO₂ heat pump cycle systems provide a high discharge temperature, therefore removing the need for cascade heat pump systems or additional heating devices
- There is no impending legislation phasing out carbon dioxide; hence it can be considered as a safe refrigerant, matching the clients long-term carbon footprint reduction strategies
- Transcritical CO₂ Everllence heat pump is remarkably suited for significant heat sink temperature differential

Transcritical compression cycle

Dismantled HOFIM[°] Heat Pump core unit

Key facts

This high temperature industrial heat pump is able to generate temperatures from 0 °C (32 °F) up to 150 °C (302 °F) and up to 50 MW (170.61 MMBtu / h) of heating load and 30 MW (8530 tons of refrigeration) of cooling load with just one single heat pump unit.

Key components

HOFIM®

- Integrated machinery concept comprising of a centrifugal compressor, a high speed electric motor and power recovery turbine stage
- Hermetically sealed design preventing gas leakages to the environment
- Modular concept for maximum process design flexibility
- The active magnetic bearing system ensures a broad operating range, the highest reliability and availability as well as a quick start-up and shutdown; without a lubrication oil system and complex auxiliaries
- Designed for full remote operation, thanks to the comprehensive electric design
- Optimized installation and commissioning as well as lower maintenance since no external cooling medium, no lube oil neither sealing gas is required

Heat sink HEX

- Printed circuit heat exchanger (PCHE) design
- Very compact and robust design
- Suitable for efficient gas to liquid heat transfer with narrow approach temperatures

Evaporator

 Different types available based on heat source media (Shell & Tube, PCHE, Plate Fin)

Recuperator

- Heat exchanger used to optimize the system and reduce system losses
- Different types available based on heat source media (Shell & Tube, PCHE, Plate Fin)

Expansion

- Turbine stage for recuperation of the usable kinetic energy of the refrigerant in the expansion process
- Expansion valve for the expansion into the two-phase region until evaporation pressure

Control system

- Process control system for control and operation of the complete heat pump unit
- Advanced digital services for remote operation, real time monitoring and predictive maintenance availably

Other available options

- CO₂ to air evaporators
- CO₂ detection system for machinery room and in
- the water systems
- Heat exchanger online cleaning systems (on water side)
- Additional CO₂ storage vessel for maintenance purposes
- A wide range of after sales

Selected applications

Scalable and modular, Everllence mega heat pumps are suitable for mid- to large-scale thermal consumers in the range of 25 – 50 MW per unit and larger.

District heating, municipal, urban and large facilities

With the Everllence mega heat pumps, you can decarbonize the complete energy supply for district heating networks, urban quarters, small towns and large facilities like airports, universities or shopping malls.

Process industries

Everllence heat pumps provide cost-efficient carbon-neutral heating or cooling for all kinds of industrial processes with intensive heating and / or cooling demands, especially in the food, beverage and chemical industries.

Data centers

Data center operators can reduce their CO_2 emissions and electricity costs with a direct supply of cooling energy. An additional revenue stream can be created by participating in the power markets and exporting thermal energy, e.g. for district heating.

Everllence

Everllence 86224 Augsburg, Germany P + 49 821 322-0 info@everllence.com www.everllence.com MAN Energy Solutions SE has been renamed to Everllence SE and its products are being rebranded from "MAN" and/or "MAN Energy Solutions" to "Everllence". As this is an ongoing process, any reference to "MAN" and/or "MAN Energy Solutions" is actually a reference to "Everllence".

All data provided in this document is non-binding. This data serves informational purposes only and is not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.

Copyright ©Everllence - EVR 000004EN-250600, GKM-AUG